World record setting experiment brings quantum computing a step closer to reality

An artistic rendition of a 'bound exciton' quantum state used to prepare and read out information stored in the form of quantum bits.

Despite recent successes in the field, creating a quantum computer is really hard. For one thing quantum bits in a super positioned state (or qubits, the basic unit of data for quantum computing) have a hard time surviving at room temperature. Typically, these superposition states last for only a few seconds, but in a recent experiment at Simon Fraser University in Burnaby , researchers were able to keep a quantum system alive for a full 39 minutes.

“These lifetimes are at least ten times longer than those measured in previous experiments,” explained Stephanie Simmons from the University of Oxford’s Department of Materials. “Having such robust, as well as long-lived, qubits could prove very helpful for anyone trying to build a quantum computer.” Even so, they aren’t particularly active ones – all of the qubits in the experiment shared the same quantum state. To perform actual calculations (and thus build a functioning quantum computer), a system would need to put multiple qubtis in different quantum states. Sound complicated? It sure is, but it’s a significant step forward to building the ultrafast computing platforms of tomorrow. Eager to learn more? Check out the official press release at the source link below.

[Image Credit: Stephanie Simmons, University of Oxford]

Filed under: ,

Comments

Source: University of Oxford

How the Hell Does a Quantum Computer Work?

You’ve probably heard people—including us—banging on about quantum computers for a long ol’ time. But that doesn’t necessarily mean you know exactly how they work. Fortunately this video is here to help.

Read more…

    

Researchers create working quantum bit in silicon, pave way for PCs of the future

Researchers create working quantum bit in silicon, pave way for PCs of the future

If you’ve been paying attention, you know the quantum computing revolution is coming — and so far the world has a mini quantum network, not to mention the $10,000 D-Wave One, to show for it. Researchers from the University of Melbourne and University College, London, have now developed the “first working quantum bit based on a single atom of silicon.” By measuring and manipulating the magnetic orientation, or spin, of an electron bound to a phosphorus atom embedded in a silicon chip, the scientists were able to both read and write information, forming a qubit, the basic unit of data for quantum computing.

The team used a silicon transistor, which detects the electron’s spin and captures its energy when the spin’s direction is “up.” Once the electron is in the transistor, scientists can change its spin state any way they choose, effectively “writing” information and giving them control of the quantum bit. The next step will be combing two qubits into a logic step, with the ultimate goal being a full-fledged quantum computer capable of crunching numbers, cracking encryption codes and modeling molecules that would put even supercomputers to shame. But, you know, baby steps.

Filed under: ,

Researchers create working quantum bit in silicon, pave way for PCs of the future originally appeared on Engadget on Fri, 21 Sep 2012 00:47:00 EDT. Please see our terms for use of feeds.

Permalink The Register  |  sourceUNSW Australia  | Email this | Comments