This Is the World’s Fastest Thin-Film Organic Transistor

This Is the World’s Fastest Thin-Film Organic Transistor

It might look like there’s not much to it, but you’re looking the world’s fastest thin-film organic transistor—and it could revolutionize the displays we spend our days looking at.

Read more…


    



Transistor coming to the PS4, Sony doubles down on indie games

Transistor coming to the PS4, Sony doubles down on indie games

Amir Rao and Gavin Simon from Supergiant Games hopped on stage with Sony to announce that Transistor, the company’s next title will be making its console debut on the PlayStation 4. The creators of Bastion will be making Sony’s console their home early next year and it’s bound to be one of the highlights of this year’s E3. But, if you think the embrace of indie developers ends with the cyber-punk follow up to the surprisingly successful and original Bastion, you’re wrong. Klei Games is bringing its hit Don’t Starve to the PS4 and Octodad: Dadliest Catch from Young Horses is also on tap. Ragtag Studios, Red Barrels and 17-Bit Games are also bringing titles to the PlayStation before other consoles. There’s even going to be a remake of Oddworld, called Oddworld: New ‘n Tasty. Huzzah! And don’t miss the trailer for Transistor after the break.

Follow all of our E3 2013 coverage at our event hub.

Filed under: , ,

Comments

Stanford researchers create genetic transistors, make biologic computing possible

Stanford researchers create genetic transistors, make biologic computing possibleWhen constructing computer circuits, most folks start with silicon and metal, but not the researchers at Stanford. The boffins in Palo Alto want to build computers out of living tissue, and to that end they’ve created a biological transistor, called the transcriptor. Transcriptors substitute DNA for semiconductors and RNA for the electrons in traditional transistors — essentially, the transcriptor controls the flow of a specific RNA protein along a DNA strand using tailored combinations of enzymes. Using these transcriptors, researchers built logic gates to derive true/false answers to biochemical questions posed within living cells. Using these bio-transistors, researchers gain access to data not previously available (like whether an individual cell has been exposed to certain external stimuli), in addition to allowing them to control basic functions like cellular reproduction.

This new breakthrough — when combined with the DNA-based data storage and a method to transmit DNA between cells the school’s already working on — means that Stanford has created all the necessary components of a biologic computer. Such computers would allow man to actually reprogram how living systems operate. Of course, they haven’t built a living genetic PC just yet, but to speed up its development, the team has contributed all the transcriptor-based logic gates to the public domain. Looking to build your own biologic computer? A full explanation of the transcriptor awaits below.

Filed under:

Comments

Via: The Verge

Source: Stanford University, Science Magazine

Globalfoundries unveils 14nm-XM chip architecture, vows up to a 60 percent jump in battery life

Globalfoundries unveils14nmXM chip architecture, vows as much as 60 percent more battery life

Globalfoundries wants to show that it can play the 3D transistor game as well as Intel. Its newly unveiled 14nm-XM (Extreme Mobility) modular architecture uses the inherently low-voltage, low-leak nature of the foundry’s FinFET layout, along with a few traces of its still-in-development 20nm process, to build a 14-nanometer chip with all the size and power savings that usually come from a die shrink. Compared to the larger processors with flat transistors that we’re used to, the new technique is poised to offer between 40 to 60 percent better battery life, all else being equal — a huge help when even those devices built on a 28nm Snapdragon S4 can struggle to make it through a full day on a charge. To no one’s shock, Globalfoundries is focusing its energy on getting 14nm-XM into the ARM-based processors that could use the energy savings the most. It will be some time before you find that extra-dimensional technology sitting in your phone or tablet, though. Just as Intel doesn’t expect to reach those miniscule sizes until 2013, Globalfoundries expects its first working 14nm silicon to arrive the same year. That could leave a long wait between test production runs and having a finished product in your hands.

Continue reading Globalfoundries unveils 14nm-XM chip architecture, vows up to a 60 percent jump in battery life

Filed under: ,

Globalfoundries unveils 14nm-XM chip architecture, vows up to a 60 percent jump in battery life originally appeared on Engadget on Sun, 23 Sep 2012 21:29:00 EDT. Please see our terms for use of feeds.

Permalink   |  sourceGlobalfoundries  | Email this | Comments

Researchers create working quantum bit in silicon, pave way for PCs of the future

Researchers create working quantum bit in silicon, pave way for PCs of the future

If you’ve been paying attention, you know the quantum computing revolution is coming — and so far the world has a mini quantum network, not to mention the $10,000 D-Wave One, to show for it. Researchers from the University of Melbourne and University College, London, have now developed the “first working quantum bit based on a single atom of silicon.” By measuring and manipulating the magnetic orientation, or spin, of an electron bound to a phosphorus atom embedded in a silicon chip, the scientists were able to both read and write information, forming a qubit, the basic unit of data for quantum computing.

The team used a silicon transistor, which detects the electron’s spin and captures its energy when the spin’s direction is “up.” Once the electron is in the transistor, scientists can change its spin state any way they choose, effectively “writing” information and giving them control of the quantum bit. The next step will be combing two qubits into a logic step, with the ultimate goal being a full-fledged quantum computer capable of crunching numbers, cracking encryption codes and modeling molecules that would put even supercomputers to shame. But, you know, baby steps.

Filed under: ,

Researchers create working quantum bit in silicon, pave way for PCs of the future originally appeared on Engadget on Fri, 21 Sep 2012 00:47:00 EDT. Please see our terms for use of feeds.

Permalink The Register  |  sourceUNSW Australia  | Email this | Comments

IBM creates consistent electron spin inside semiconductors, takes spintronics one twirl closer

IBM creates consistent electron spin inside of a chip, takes spintronics one twirl closer

A fundamental challenge of developing spintronics, or computing where the rotation of electrons carries instructions and other data rather than the charge, has been getting the electrons to spin for long enough to shuttle data to its destination in the first place. IBM and ETH Zurich claim to be the first achieving that feat by getting the electrons to dance to the same tune. Basing a semiconductor material on gallium arsenide and bringing the temperature to an extremely low -387F, the research duo have created a persistent spin helix that keeps the spin going for the 1.1 nanoseconds it would take a normal 1GHz processor to run through its full cycle, or 30 times longer than before. As impressive as it can be to stretch atomic physics that far, just remember that the theory is some distance from practice: unless you’re really keen on running a computer at temperatures just a few hops away from absolute zero, there’s work to be done on producing transistors (let alone processors) that safely run in the climate of the family den. Assuming that’s within the realm of possibility, though, we could eventually see computers that wring much more performance per watt out of one of the most basic elements of nature.

Continue reading IBM creates consistent electron spin inside semiconductors, takes spintronics one twirl closer

Filed under:

IBM creates consistent electron spin inside semiconductors, takes spintronics one twirl closer originally appeared on Engadget on Mon, 13 Aug 2012 14:41:00 EDT. Please see our terms for use of feeds.

Permalink TG Daily  |  sourceNature  | Email this | Comments

ARM and Globalfoundries hammer out deal to promote 20nm mobile chips

ARM and Globalfoundries hammer out deal to promote 20nm mobile chips

Sure it’s British, but ARM’s mobile empire is being built through careful alliances rather than conquest. The chip designer’s latest deal with Globalfoundries, which mirrors a very similar agreement signed with rival foundry TSMC last month, is a case in point. It’s designed to promote the adoption of fast, energy-efficient 20nm processors by making it easy for chip makers (like Samsung, perhaps) to knock on Globalfoundries’ door for the grunt work of actually fabricating the silicon — since the foundry will now be prepped to produce precisely that type of chip. As far as the regular gadget buyer is concerned, all this politicking amounts to one thing: further reassurance that mobile processor shrinkage isn’t going to peter out after the new 32nm Exynos chips or the 28nm Snapdragon S4 — it’s going to push on past the 22nm benchmark that Ivy Bridge already established in the desktop sphere and hopefully deliver phones and tablets that do more with less juice.

Continue reading ARM and Globalfoundries hammer out deal to promote 20nm mobile chips

Filed under: ,

ARM and Globalfoundries hammer out deal to promote 20nm mobile chips originally appeared on Engadget on Mon, 13 Aug 2012 10:16:00 EDT. Please see our terms for use of feeds.

Permalink   |   | Email this | Comments

3D NAND Chips Are Going to Make High-Capacity SSDs a Reality [Guts]

SSDs are wonderful things that massively speed up your computer and they’re getting cheaper too. But currently they don’t offer the capacity that some users demand. Fortunately, that could all be about to change. More »